CALCULATOR LAB: IMPROPER INTEGRALS

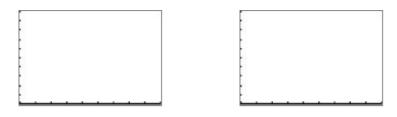
In this lab, we will compare the improper integrals

$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 and $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$

(These integrals are called improper because one of the limits of integration is not finite.)

PART I: NUMERICAL APPROACH

b	$\int_{1}^{b} \frac{1}{x^2} dx$	$\int_1^b \frac{1}{\sqrt{x}}$
10		
100		
1000		
10000		


1. (a) Using your calculator, complete the following table:

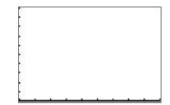
(b) What is happening to $\int_{1}^{b} \frac{1}{x^{2}} dx$ as *b* gets larger? What should the value of $\int_{1}^{\infty} \frac{1}{x^{2}} dx$ be?

(c) What is happening to $\int_1^b \frac{1}{\sqrt{x}}$ as *b* gets larger? What should the value of $\int_1^\infty \frac{1}{\sqrt{x}} dx$ be?

PART II: GRAPHICAL APPROACH

2. Sketch the general shape of $\frac{1}{x^2}$ in the box on the left, and $\frac{1}{\sqrt{x}}$ in the box on the right. (The window dimensions are xMin = 0, xMax = 10, yMin = 0, yMax = 10.)

3. (a) Graph $\frac{1}{\sqrt{x}}$ with xMin = 100, xMax = 1000, yMin = 0, yMax = 0.1 in the box below.

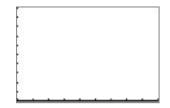


i. Approximate the total area of the viewing box.

ii. Approximately what percentage of the viewing box is taken by $\int_{100}^{1000} \frac{1}{\sqrt{x}} dx$?

iii. Using parts (a) and (b) approximate
$$\int_{100}^{1000} \frac{1}{\sqrt{x}} dx$$
.

(b) Graph $\frac{1}{\sqrt{x}}$ with xMin = 10,000, xMax = 100,000, yMin = 0, yMax = 0.01 in the box below.


i. Approximate the total area of the viewing box.

ii. Approximately what percentage of the viewing box is taken by $\int_{10,000}^{100,000} \frac{1}{\sqrt{x}} dx$?

iii. Using parts (a) and (b) approximate
$$\int_{10,000}^{100,000} \frac{1}{\sqrt{x}} dx$$
.

(c) What would the answers for parts (a) and (b) mean for the value of $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$?

4. (a) Graph $\frac{1}{x^2}$ with xMin = 10, xMax = 100, yMin = 0, yMax = 0.01 in the box below.

i. Approximate the total area of the viewing box.

ii. Approximately what percentage of the viewing box is taken by $\int_{10}^{100} \frac{1}{x^2} dx$?

iii. Using parts (a) and (b) approximate
$$\int_{10}^{100} \frac{1}{x^2} dx$$
.

(b) Graph $\frac{1}{x^2}$ with xMin = 100, xMax = 1000, yMin = 0, yMax = 0.0001 in the box below.

- i. Approximate the total area of the viewing box.
- ii. Approximately what percentage of the viewing box is taken by $\int_{100}^{1000} \frac{1}{x^2} dx$?

iii. Using parts (a) and (b) approximate
$$\int_{100}^{1000} \frac{1}{x^2} dx$$
.

(c) What would the answers for parts (a) and (b) mean for the value of $\int_1^\infty \frac{1}{x^2} dx$?

PART III: WRAP-UP

5. Is it true that
$$\int_0^\infty f(x)dx$$
 will converge as long as $f(x) \to 0$ when $x \to \infty$?